## Semiprojectivity for certain purely infinite $C^*$-algebras

HTML articles powered by AMS MathViewer

- by Jack Spielberg PDF
- Trans. Amer. Math. Soc.
**361**(2009), 2805-2830 Request permission

## Abstract:

It is proved that classifiable simple separable nuclear purely infinite $C^*$-algebras having finitely generated $K$-theory and torsion-free $K_{1}$ are semiprojective. This is accomplished by exhibiting these algebras as $C^*$-algebras of infinite directed graphs.## References

- Bruce Blackadar,
*Shape theory for $C^\ast$-algebras*, Math. Scand.**56**(1985), no. 2, 249–275. MR**813640**, DOI 10.7146/math.scand.a-12100 - Bruce Blackadar,
*Semiprojectivity in simple $C^*$-algebras*, Operator algebras and applications, Adv. Stud. Pure Math., vol. 38, Math. Soc. Japan, Tokyo, 2004, pp. 1–17. MR**2059799**, DOI 10.2969/aspm/03810001 - Lawrence G. Brown, Philip Green, and Marc A. Rieffel,
*Stable isomorphism and strong Morita equivalence of $C^*$-algebras*, Pacific J. Math.**71**(1977), no. 2, 349–363. MR**463928**, DOI 10.2140/pjm.1977.71.349 - Joachim Cuntz and Wolfgang Krieger,
*A class of $C^{\ast }$-algebras and topological Markov chains*, Invent. Math.**56**(1980), no. 3, 251–268. MR**561974**, DOI 10.1007/BF01390048 - Joachim Cuntz,
*$K$-theory for certain $C^{\ast }$-algebras*, Ann. of Math. (2)**113**(1981), no. 1, 181–197. MR**604046**, DOI 10.2307/1971137 - Joachim Cuntz and Wolfgang Krieger,
*A class of $C^{\ast }$-algebras and topological Markov chains*, Invent. Math.**56**(1980), no. 3, 251–268. MR**561974**, DOI 10.1007/BF01390048 - E. G. Effros and J. Kaminker,
*Homotopy continuity and shape theory for $C^\ast$-algebras*, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 152–180. MR**866493** - Ruy Exel and Marcelo Laca,
*Cuntz-Krieger algebras for infinite matrices*, J. Reine Angew. Math.**512**(1999), 119–172. MR**1703078**, DOI 10.1515/crll.1999.051 - James G. Glimm,
*On a certain class of operator algebras*, Trans. Amer. Math. Soc.**95**(1960), 318–340. MR**112057**, DOI 10.1090/S0002-9947-1960-0112057-5 - E. Kirchberg, The classification of purely infinite $C^*$-algebras using Kasparov’s theory, (preprint).
- B. Neubüser, Semiprojektivität und realisierunen von rein unendlichen $C^*$-algebren, preprint, Münster, 2000.
- Eberhard Kirchberg and N. Christopher Phillips,
*Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$*, J. Reine Angew. Math.**525**(2000), 17–53. MR**1780426**, DOI 10.1515/crll.2000.065 - Iain Raeburn,
*Graph algebras*, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. MR**2135030**, DOI 10.1090/cbms/103 - Iain Raeburn and Wojciech Szymański,
*Cuntz-Krieger algebras of infinite graphs and matrices*, Trans. Amer. Math. Soc.**356**(2004), no. 1, 39–59. MR**2020023**, DOI 10.1090/S0002-9947-03-03341-5 - Mikael Rørdam,
*Classification of Cuntz-Krieger algebras*, $K$-Theory**9**(1995), no. 1, 31–58. MR**1340839**, DOI 10.1007/BF00965458 - Jack Spielberg,
*A functorial approach to the $C^*$-algebras of a graph*, Internat. J. Math.**13**(2002), no. 3, 245–277. MR**1911104**, DOI 10.1142/S0129167X02001319 - Jack Spielberg,
*Non-cyclotomic presentations of modules and prime-order automorphisms of Kirchberg algebras*, J. Reine Angew. Math.**613**(2007), 211–230. MR**2377136**, DOI 10.1515/CRELLE.2007.098 - Wojciech Szymański,
*On semiprojectivity of $C^*$-algebras of directed graphs*, Proc. Amer. Math. Soc.**130**(2002), no. 5, 1391–1399. MR**1879962**, DOI 10.1090/S0002-9939-01-06282-7 - Wojciech Szymański,
*The range of $K$-invariants for $C^*$-algebras of infinite graphs*, Indiana Univ. Math. J.**51**(2002), no. 1, 239–249. MR**1896162**, DOI 10.1512/iumj.2002.51.1920 - Shuang Zhang,
*Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. I*, Pacific J. Math.**155**(1992), no. 1, 169–197. MR**1174483**, DOI 10.2140/pjm.1992.155.169

## Additional Information

**Jack Spielberg**- Affiliation: Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287-1804
- Email: jack.spielberg@asu.edu
- Received by editor(s): February 19, 2001
- Received by editor(s) in revised form: August 26, 2005
- Published electronically: January 26, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**361**(2009), 2805-2830 - MSC (2000): Primary 46L80; Secondary 46L85, 22A22
- DOI: https://doi.org/10.1090/S0002-9947-09-04928-9
- MathSciNet review: 2485409